Contract 0xCC54299Fc291B261B2bF5552E7F0E5d2F8613E8C 3

Txn Hash Method
Block
From
To
Value [Txn Fee]
0x7cfe05dcb8707449d09f3076d8ec31b383cd6970f2ccc99a43012e71fddbaf8e0x60c03461273133492023-04-06 16:11:1563 days 22 hrs ago0x56e44874f624ebde6efcc783efd685f0fbdc6dcf IN  Create: UniswapV2LikeOracle0 xDAI0.000397375002
[ Download CSV Export 
Parent Txn Hash Block From To Value
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
UniswapV2LikeOracle

Compiler Version
v0.8.19+commit.7dd6d404

Optimization Enabled:
Yes with 1000000 runs

Other Settings:
default evmVersion
File 1 of 7 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}

File 2 of 7 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10**64) {
                value /= 10**64;
                result += 64;
            }
            if (value >= 10**32) {
                value /= 10**32;
                result += 32;
            }
            if (value >= 10**16) {
                value /= 10**16;
                result += 16;
            }
            if (value >= 10**8) {
                value /= 10**8;
                result += 8;
            }
            if (value >= 10**4) {
                value /= 10**4;
                result += 4;
            }
            if (value >= 10**2) {
                value /= 10**2;
                result += 2;
            }
            if (value >= 10**1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
        }
    }
}

File 3 of 7 : IOracle.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.19;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

interface IOracle {
    error ConnectorShouldBeNone();
    error PoolNotFound();
    error PoolWithConnectorNotFound();

    function getRate(IERC20 srcToken, IERC20 dstToken, IERC20 connector) external view returns (uint256 rate, uint256 weight);
}

File 4 of 7 : IUniswapV2Pair.sol
// SPDX-License-Identifier: UNLICENSED

pragma solidity 0.8.19;

interface IUniswapV2Pair {
    function getReserves() external view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast);
}

File 5 of 7 : Sqrt.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.19;

library Sqrt {
    function sqrt(uint y) internal pure returns (uint z) {
        unchecked {
            if (y > 3) {
                z = y;
                uint x = y / 2 + 1;
                while (x < z) {
                    z = x;
                    x = (y / x + x) / 2;
                }
            } else if (y != 0) {
                z = 1;
            }
        }
    }
}

File 6 of 7 : OracleBase.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.19;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/utils/math/Math.sol";
import "../interfaces/IOracle.sol";
import "../libraries/Sqrt.sol";

abstract contract OracleBase is IOracle {
    using Sqrt for uint256;

    IERC20 private constant _NONE = IERC20(0xFFfFfFffFFfffFFfFFfFFFFFffFFFffffFfFFFfF);

    function getRate(IERC20 srcToken, IERC20 dstToken, IERC20 connector) external view override returns (uint256 rate, uint256 weight) {
        uint256 balance0;
        uint256 balance1;
        if (connector == _NONE) {
            (balance0, balance1) = _getBalances(srcToken, dstToken);
            weight = (balance0 * balance1).sqrt();
        } else {
            uint256 balanceConnector0;
            uint256 balanceConnector1;
            (balance0, balanceConnector0) = _getBalances(srcToken, connector);
            (balanceConnector1, balance1) = _getBalances(connector, dstToken);
            if (balanceConnector0 > balanceConnector1) {
                balance0 = balance0 * balanceConnector1 / balanceConnector0;
            } else {
                balance1 = balance1 * balanceConnector0 / balanceConnector1;
            }
            weight = Math.min(balance0 * balanceConnector0, balance1 * balanceConnector1).sqrt();
        }

        rate = balance1 * 1e18 / balance0;
    }

    function _getBalances(IERC20 srcToken, IERC20 dstToken) internal view virtual returns (uint256 srcBalance, uint256 dstBalance);
}

File 7 of 7 : UniswapV2LikeOracle.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.19;

import "./OracleBase.sol";
import "../interfaces/IUniswapV2Pair.sol";

contract UniswapV2LikeOracle is OracleBase {
    address public immutable factory;
    bytes32 public immutable initcodeHash;

    constructor(address _factory, bytes32 _initcodeHash) {
        factory = _factory;
        initcodeHash = _initcodeHash;
    }

    // calculates the CREATE2 address for a pair without making any external calls
    function _pairFor(IERC20 tokenA, IERC20 tokenB) private view returns (address pair) {
        pair = address(uint160(uint256(keccak256(abi.encodePacked(
                hex"ff",
                factory,
                keccak256(abi.encodePacked(tokenA, tokenB)),
                initcodeHash
            )))));
    }

    function _getBalances(IERC20 srcToken, IERC20 dstToken) internal view override returns (uint256 srcBalance, uint256 dstBalance) {
        (IERC20 token0, IERC20 token1) = srcToken < dstToken ? (srcToken, dstToken) : (dstToken, srcToken);
        (uint256 reserve0, uint256 reserve1,) = IUniswapV2Pair(_pairFor(token0, token1)).getReserves();
        (srcBalance, dstBalance) = srcToken == token0 ? (reserve0, reserve1) : (reserve1, reserve0);
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 1000000
  },
  "viaIR": true,
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "metadata": {
    "useLiteralContent": true
  },
  "libraries": {}
}

Contract ABI

[{"inputs":[{"internalType":"address","name":"_factory","type":"address"},{"internalType":"bytes32","name":"_initcodeHash","type":"bytes32"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ConnectorShouldBeNone","type":"error"},{"inputs":[],"name":"PoolNotFound","type":"error"},{"inputs":[],"name":"PoolWithConnectorNotFound","type":"error"},{"inputs":[],"name":"factory","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"srcToken","type":"address"},{"internalType":"contract IERC20","name":"dstToken","type":"address"},{"internalType":"contract IERC20","name":"connector","type":"address"}],"name":"getRate","outputs":[{"internalType":"uint256","name":"rate","type":"uint256"},{"internalType":"uint256","name":"weight","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"initcodeHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"}]

60c03461008857601f6106e038819003918201601f19168301916001600160401b0383118484101761008d578084926040948552833981010312610088578051906001600160a01b038216820361008857602001519060805260a05260405161063c90816100a4823960805181818160880152610430015260a05181818160e5015261045e0152f35b600080fd5b634e487b7160e01b600052604160045260246000fdfe6080604052600436101561001257600080fd5b6000803560e01c806314999e79146101085780635a4fb9a8146100af5763c45a01551461003e57600080fd5b346100ac57807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100ac57602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b80fd5b50346100ac57807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100ac5760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b50346100ac5760607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100ac576004359073ffffffffffffffffffffffffffffffffffffffff808316830361029557602435908082168203610291576044359080821680830361028d57036101fd5750610185919261037d565b90919061019a6101958285610299565b610314565b915b670de0b6b3a7640000918281029281840414901517156101d057506040926101c3916102db565b9082519182526020820152f35b807f4e487b7100000000000000000000000000000000000000000000000000000000602492526011600452fd5b61020a816102149561037d565b949092839261037d565b92909183838711156102695750509061024e61024761023f8761023a8561025c97610299565b6102db565b965b87610299565b9184610299565b808210156102625750610314565b9161019c565b9050610314565b86945083925061028761025c9461023a61024e949961024794610299565b94610241565b8480fd5b8280fd5b5080fd5b818102929181159184041417156102ac57565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b81156102e5570490565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b906000600383111561035057508160018082811c01915b84831061033757505050565b919350908361034681836102db565b01821c919061032b565b9161035757565b60019150565b51906dffffffffffffffffffffffffffff8216820361037857565b600080fd5b73ffffffffffffffffffffffffffffffffffffffff9080821690838316808310156105fa575092915b60405160208101907fffffffffffffffffffffffffffffffffffffffff000000000000000000000000806060968189891b168552871b1660348301526028825285820167ffffffffffffffff93838210858311176105cb57816040528351902060808401927fff0000000000000000000000000000000000000000000000000000000000000084527f0000000000000000000000000000000000000000000000000000000000000000891b16608185015260958401527f000000000000000000000000000000000000000000000000000000000000000060b58401526055815260e0830191818310858411176105cb576004838781938b9583604052519020167f0902f1ac0000000000000000000000000000000000000000000000000000000082525afa9586156105bf576000938497610505575b505050506dffffffffffffffffffffffffffff80911693169316146000146105015791565b9091565b908092939750903d83116105b7575b601f82017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016880160e0019081118482101761058a57604052860186900312610295576105609061035d565b90610120610571610100870161035d565b95015163ffffffff8116036100ac5750388080806104dc565b6024857f4e487b710000000000000000000000000000000000000000000000000000000081526041600452fd5b3d9150610514565b6040513d6000823e3d90fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b919350509180916103a656fea264697066735822122026a14000208a54a53f7951ac28ec0c51de6d27fbf6f18b416230d72f20ab594564736f6c63430008130033000000000000000000000000a818b4f111ccac7aa31d0bcc0806d64f2e0737d73f88503e8580ab941773b59034fb4b2a63e86dbc031b3633a925533ad3ed2b93

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000a818b4f111ccac7aa31d0bcc0806d64f2e0737d73f88503e8580ab941773b59034fb4b2a63e86dbc031b3633a925533ad3ed2b93

-----Decoded View---------------
Arg [0] : _factory (address): 0xa818b4f111ccac7aa31d0bcc0806d64f2e0737d7
Arg [1] : _initcodeHash (bytes32): 0x3f88503e8580ab941773b59034fb4b2a63e86dbc031b3633a925533ad3ed2b93

-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 000000000000000000000000a818b4f111ccac7aa31d0bcc0806d64f2e0737d7
Arg [1] : 3f88503e8580ab941773b59034fb4b2a63e86dbc031b3633a925533ad3ed2b93


Block Transaction Gas Used Reward
Age Block Fee Address BC Fee Address Voting Power Jailed Incoming
Block Uncle Number Difficulty Gas Used Reward
Loading
Make sure to use the "Vote Down" button for any spammy posts, and the "Vote Up" for interesting conversations.